APLIKASI KONTROL RUANG HAMPA UDARA




 

1. Tujuan

1. Mengetahui dan memahami sensor Infrared, MQ-8, MPXA6115AU, HIH, dan Sensor LM 35

2. Mengetahui prinsip kerja sensor Infrared, MQ-8, MPXA6115AU, HIH, dan Sensor LM 35

3. Mengaplikasikan sensor Infrared, MQ-8, MPXA6115AU, HIH, dan sensor LM 35 sebagai aplikasi kontrol ruang hampa udara

  
2. Alat dan Bahan

     2.1 Alat
  • DC Voltmeter
 


 Voltmeter DC yaitu alat ukur biasa digunakan untuk mengukur tegangan DC dengan cara mengukur beda potensial dari tegangan DC antara 2 titik suatu beban listrik atau rangkaian elektronika. Penambah sebuah tahanan seri atau pengali (multiplier), mengubah gerakan d’arsonval menjadi sebuah voltmeter arus searah.

     2.2 Bahan

            a.      Resistor





         Resistor merupakan salah satu komponen yang paling sering ditemukan dalam Rangkaian Elektronika. Hampir setiap peralatan Elektronika menggunakannya. Pada dasarnya Resistor adalah komponen Elektronika Pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian Elektronika. Resistor atau dalam bahasa Indonesia sering disebut dengan Hambatan atau Tahanan dan biasanya disingkat dengan Huruf “R”. Satuan Hambatan atau Resistansi Resistor adalah OHM (Ω).

       

        b. Sensor Infrared
Rangkaian sensor infra merah menggunakan foto transistor dan led infra merah yang dihubungkan secara optik. Foto transistor akan aktif apabila terkena cahaya dari led infra merah. Antara Led dan foto transistor dipisahkan oleh jarak. 






 




        c. Motor DC


   Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah., maka secara otomatis sensor akan bekerja.

Konfigurasi Pin



        d. Sensor MQ-8






 

        e. Transistor NPN
 

NPN adalah transistor yang bekerja mengalirkan arus negatif ke positif sebagai biasnya. Transistor NPN mengalirkan arus negatif dari emitor menuju ke kolektor. Emitor befungsi sebagai input dan kolektor berfungsi sebagai kolektor.


 

f. Relay 

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.


Konfigurasi Pin






 

            g. LED
 Light Emitting Diode atau yang sering disingkat LED merupakan sebuah komponen elektromagnetik yang dapat memancarkan cahaya monokromatik melalui tegangan maju. LED terbuat dari bahan semi konduktor yang merupakan keluarga dioda.





Lampu adalah suatu perangkat yang dapat menghasilkan cahaya saat dialiri arus listrik.
 
        h. Baterai 

 
 Digunakan sebagai sumber tegangan pada rangkaian.
  Konfigurasi pin

 
 


            a. Resistor

 Resistor adalah komponen elektronika yang berfungsi untuk menghambat atau membatasi aliran listrik yang mengalir dalam suatu rangkaian elektronika. Satuan atau nilai resistansi suatu resistor disebut Ohm dilambangkan dengan simbol Omega (Ω).

Simbol Resistor 

Cara Menentukan Nilai Resistor

     a. Dengan Kode Warna

- Resistor dengan 4  cincin kode warna 

     Maka cincin ke 1 dan ke 2 merupakan digit angka, dan cincin kode warna ke 3 merupakan faktor pengali kemudian cincin kode warnake 4 menunjukan nilai toleransi resistor.

    - Resistor dengan 5 cincin kode warna
    Maka cincin ke 1, ke 2 dan ke 3 merupakan digit angka, dan cincin kode warna ke 4 merupakan faktor pengali kemudian cincin kode warna ke 5 menunjukan nilai toleransi resistor.

    - Resistor dengan 6 cincin warna
    Resistor dengan 6 cicin warna pada prinsipnya sama dengan resistor dengan 5 cincin warna dalam menentukan nilai resistansinya. Cincin ke 6 menentukan coefisien temperatur yaitu temperatur maksimum yang diijinkan untuk resistor tersebut.

    b. Dengan Kode Huruf Resistor 

Kode Huruf Untuk Nilai Resistansi :

· R, berarti x1 (Ohm)

· K, berarti x1000 (KOhm)

· M, berarti x 1000000 (MOhm)

    Kode Huruf Untuk Nilai Toleransi :

· F, untuk toleransi 1%

· G, untuk toleransi 2%

· J, untuk toleransi 5%

· K, untuk toleransi 10%

· M, untuk toleransi 20%

Rumus Menentukan Nilai Resitor
- Resistor Seri R(total) = R1+R2+ R(selanjut nya).

- Resistor Paralel R(total) = 1/R(total) = 1/R1 + 1/R2 + 1/R(seterusnya).   

b.    Sensor Infrared

Infra red (IR) detektor atau sensor infra merah adalah komponen elektronika yang dapat mengidentifikasi cahaya infra merah (infra red, IR). Sensor infra merah atau detektor infra merah saat ini ada yang dibuat khusus dalam satu modul dan dinamakan sebagai IR Detector Photomodules. IR Detector Photomodules merupakan sebuah chip detektor inframerah digital yang di dalamnya terdapat fotodiode dan penguat (amplifier).
Bentuk dan Konfigurasi Pin IR Detector Photomodules TSOP

IR

Konfigurasi pin infra red (IR) receiver atau penerima infra merah tipe TSOP adalah output (Out), Vs (VCC +5 volt DC), dan Ground (GND). Sensor penerima inframerah TSOP ( TEMIC Semiconductors Optoelectronics Photomodules ) memiliki fitur-fitur utama yaitu fotodiode dan penguat dalam satu chip, keluaran aktif rendah, konsumsi daya rendah, dan mendukung logika TTL dan CMOS. Detektor infra merah atau sensor inframerah jenis TSOP (TEMIC Semiconductors Optoelectronics Photomodules) adalah penerima inframerah yang telah dilengkapi filter frekuensi 30-56 kHz, sehingga penerima langsung mengubah frekuensi tersebut menjadi logika 0 dan 1. Jika detektor inframerah (TSOP) menerima frekuensi carrier tersebut, maka pin keluarannya akan berlogika 0. Sebaliknya, jika tidak menerima frekuensi carrier tersebut, maka keluaran detektor inframerah (TSOP) akan berlogika 1.

2. SISTEM SENSOR INFRAMERAH

Sistem sensor infra merah pada dasarnya menggunakan infra merah sebagai media untuk komunikasi data antara receiver dan transmitter. Sistem akan bekerja jika sinar infra merah yang dipancarkan terhalang oleh suatu benda yang mengakibatkan sinar infra merah tersebut tidak dapat terdeteksi oleh penerima. Keuntungan atau manfaat dari sistem ini dalam penerapannya antara lain sebagai pengendali jarak jauh, alarm keamanan, otomatisasi pada sistem. Pemancar pada sistem ini tediri atas sebuah LED infra merah yang dilengkapi dengan rangkaian yang mampu membangkitkan data untuk dikirimkan melalui sinar infra merah, sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.

LED Infra Merah
LED adalah suatu bahan semikonduktor yang memancarkan cahaya monokromatik yang tidak koheren ketika diberi tegangan maju. Pengembangan LED dimulai dengan alat inframerah dibuat dengan galliumarsenide. Cahaya infra merah pada dasarnya adalah radiasi elektromagnetik dari panjang gelombang yang lebih panjang dari cahaya tampak, tetapi lebih pendek dari radiasi gelombang radio, dengan kata lain inframerah merupakan warna dari cahaya tampak dengan gelombang terpanjang, yaitu sekitar 700 nm sampai 1 mm.



        c. Motor DC

Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC.


 Prinsip Kerja Motor DC

Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan RotorStator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), Armature Winding (Kumparan Jangkar), Commutator (Komutator) dan Brushes (kuas/sikat arang).

Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti.

Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.

        d. Sensor MQ-8



        e. Transistor 

Transistor merupakan alat semikonduktor yang dapat digunakan sebagai penguat sinyal, pemutus atau penyambung sinyal, stabilisasi tegangan, dan fungsi lainnya. Transistor memiliki 3 kaki elektroda, yaitu basis, kolektor, dan emitor. Pada rangkaian kali ini digunakan transistor 2SC1162 bertipe NPN. Transistor ini diperumpamakan sebagai saklar, yaitu ketika kaki basis diberi arus, maka arus pada kolektor akan mengalir ke emiter yang disebut dengan kondisi ON. Sedangkan ketika kaki basis tidak diberi arus, maka tidak ada arus mengalir dari kolektor ke emitor  yang disebut dengan kondisi OFF. Namun, jika arus yang diberikan pada kaki basis  melebihi arus pada kaki kolektor atau arus pada kaki kolektor adalah nol (karena tegangan kaki kolektor sekitar 0,2 - 0,3 V), maka transistor akan mengalami cutoff  (saklar tertutup).


Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.

Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.

Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.

Basis (B) berguna untuk mengatur arah gerak muatan negatif yang keluar dari transistor melalui kolektor. 

        f. Relay


Relay merupakan komponen elektronika berupa saklar atau swirch elektrik yang dioperasikan secara listrik dan terdiri dari 2 bagian utama yaitu Elektromagnet (coil) dan mekanikal (seperangkat kontak Saklar/Switch). Komponen elektronika ini menggunakan prinsip elektromagnetik untuk menggerakan saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Berikut adalah simbol dari komponen relay.

Pada dasarnya, Relay terdiri dari 4 komponen dasar  yaitu :

1. Electromagnet (Coil)

2. Armature

3. Switch Contact Point (Saklar)

4. Spring

 Gambar dari bagian-bagian relay  


 

Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :

- Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi CLOSE (tertutup)

- Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi OPEN (terbuka)

         g. Sensor LM 35

Sensor suhu LM35 adalah komponen elektronika yang memiliki fungsi untuk mengubah besaran suhu menjadi besaran listrik dalam bentuk tegangan. Sensor Suhu LM35 yang dipakai dalam penelitian ini berupa komponen elektronika elektronika yang diproduksi oleh National Semiconductor. LM35 memiliki keakuratan tinggi dan kemudahan perancangan jika dibandingkan dengan sensor suhu yang lain, LM35 juga mempunyai keluaran impedansi yang rendah dan linieritas yang tinggi sehingga dapat dengan mudah dihubungkan dengan rangkaian kendali khusus serta tidak memerlukan penyetelan lanjutan.

Meskipun tegangan sensor ini dapat mencapai 30 volt akan tetapi yang diberikan kesensor adalah sebesar 5 volt, sehingga dapat digunakan dengan catu daya tunggal dengan ketentuan bahwa LM35 hanya membutuhkan arus sebesar 60 µA hal ini berarti LM35 mempunyai kemampuan menghasilkan panas (self-heating) dari sensor yang dapat menyebabkan kesalahan pembacaan yang rendah yaitu kurang dari 0,5 ºC pada suhu 25 ºC .

Gambar 1. Sensor Suhu LM35

Pada Gambar 5.1 ditunjukan bentuk dari LM35 tampak depan dan tampak bawah. 3 pin LM35 menujukan fungsi masing-masing pin diantaranya, pin 1 berfungsi sebagai sumber tegangan kerja dari LM35, pin 2 atau tengah digunakan sebagai tegangan keluaran atau Vout dengan jangkauan kerja dari 0 Volt sampai dengan 1,5 Volt dengan tegangan operasi sensor LM35 yang dapat digunakan antara 4 Volt sampai 30 Volt. Keluaran sensor ini akan naik sebesar 10 mV setiap derajad celcius sehingga diperoleh persamaan sebagai berikut :
VLM35 = Suhu* 10 mV

Secara prinsip sensor akan melakukan penginderaan pada saat perubahan suhu setiap suhu 1 ºC akan menunjukan tegangan sebesar 10 mV. Pada penempatannya LM35 dapat ditempelkan dengan perekat atau dapat pula disemen pada permukaan akan tetapi suhunya akan sedikit berkurang sekitar 0,01 ºC karena terserap pada suhu permukaan tersebut. Dengan cara seperti ini diharapkan selisih antara suhu udara dan suhu permukaan dapat dideteksi oleh sensor LM35 sama dengan suhu disekitarnya, jika suhu udara disekitarnya jauh lebih tinggi atau jauh lebih rendah dari suhu permukaan, maka LM35 berada pada suhu permukaan dan suhu udara disekitarnya .

Jarak yang jauh diperlukan penghubung yang tidak terpengaruh oleh interferensi dari luar, dengan demikian digunakan kabel selubung yang ditanahkan sehingga dapat bertindak sebagai suatu antenna penerima dan simpangan didalamnya, juga dapat bertindak sebagai perata arus yang mengkoreksi pada kasus yang sedemikian, dengan mengunakan metode bypass kapasitor dari Vin untuk ditanahkan. Berikut ini adalah karakteristik dari sensor LM35:

  • Memiliki sensitivitas suhu, dengan faktor skala linier antara tegangan dan suhu 10 mVolt/ºC, sehingga dapat dikalibrasi langsung dalam celcius.
  • Memiliki ketepatan atau akurasi kalibrasi yaitu 0,5ºC pada suhu 25 ºC
  •  Memiliki jangkauan maksimal operasi suhu antara -55 ºC sampai +150 ºC.
  •  Bekerja pada tegangan 4 sampai 30 volt.
  •  Memiliki arus rendah yaitu kurang dari 60 µA.
  •  Memiliki pemanasan sendiri yang rendah (low-heating) yaitu kurang dari 0,1 ºC pada udara diam.
  •  Memiliki impedansi keluaran yang rendah yaitu 0,1 W untuk beban 1 mA.
  •  Memiliki ketidaklinieran hanya sekitar ± ¼ ºC
        h. Baterai 
Baterai adalah perangkat yang terdiri dari satu atau lebih sel elektrokimia dengan koneksi eksternal yang disediakan untuk memberi daya pada perangkat listrik seperti senter, ponsel, dan mobil listrik. Ketika baterai memasok daya listrik, terminal positifnya adalah katode dan terminal negatifnya adalah anoda. Terminal bertanda negatif adalah sumber elektron yang akan mengalir melalui rangkaian listrik eksternal ke terminal positif. Ketika baterai dihubungkan ke beban listrik eksternal, reaksi redoks mengubah reaktan berenergi tinggi ke produk berenergi lebih rendah, dan perbedaan energi-bebas dikirim ke sirkuit eksternal sebagai energi listrik. Secara historis istilah "baterai" secara khusus mengacu pada perangkat yang terdiri dari beberapa sel, namun penggunaannya telah berkembang untuk memasukkan perangkat yang terdiri dari satu sel.

Prinsip operasi

Baterai mengubah energi kimia langsung menjadi energi listrik. Baterai terdiri dari sejumlah sel volta. Tiap sel terdiri dari 2 sel setengah yang terhubung seri melalui elektrolit konduktif yang berisi anion dan kation. Satu sel setengah termasuk elektrolit dan elektrode negatif, elektrode yang di mana anion berpindah; sel-setengah lainnya termasuk elektrolit dan elektrode positif di mana kation berpindah. Reaksi redoks akan mengisi ulang baterai. Kation akan tereduksi (elektron akan bertambah) di katode ketika pengisian, sedangkan anion akan teroksidasi (elektron hilang) di anode ketika pengisian. Ketika digunakan, proses ini dibalik. Elektrodanya tidak bersentuhan satu sama lain, tetapi terhubung via elektrolit. Beberapa sel menggunakan elektrolit yang berbeda untuk tiap sel setengah. Sebuah separator dapat membuat ion mengalir di antara sel-setengah dan bisa menghindari pencampuran elektrolit.

 



1. Buka aplikasi Proteus
2
. Pilih komponen yang dibutuhkan, pada rangkaian ini dibutukan komponen 
3
. Rangkai setiap komponen menjadi rangkaian yang diinginkan
4
. Ubah spesifikasi komponen sesuai kebutuhan
5
. Jalankan simulasi rangkaian    


        a. Rangkaian 

 

        b. Prinsip Kerja

Ketika Sensor Mendeteksi adanya suhu, tekanan dan kelembaban yang mengalami perubahan pada periode tertentu, maka ada arus yang mengalir dari kaki Vout masing-masing sensor. Dan akan terdeteksi nilai arus pada dc voltmeter pertama, lalu akan dihambat melalui resistor yang bernilai 10k dan setelah itu nilai arus akan berkurang  dan di baca melalui voltmeter kedua menjadi 0,87 Volt yang mana dengan nilai arus tersebut sudah cukup untuk mengaktifkan kaki base transistor, lalu akan ada arus yang mengalir dari power supply menuju ke relay, menuju ke kaki kolektor lalu ke kaki emitor, dan akan berakhir di ground. Dengan adanya arus yang mengalir ke relay menyebabkan relay aktif dan switch akan berpindah dari kanan ke kiri yang mana arus akan mengalir ke baterai dan baterai mengalirkan arus untuk mengaktifkan komponen indikator yang telah dihambat oleh resistor 220 dan mengaktifkan komponen output rangkaian.

 Sama halnya dengan 3 rangkaian di atas, yaitu ketika ada gas yang masuk ke ruang hampa udara dan gas tersebut berbahaya, maka ada arus yang mengalir dari kaki Vout masing-masing sensor. Dan akan terdeteksi nilai arus pada dc voltmeter pertama, lalu akan dihambat melalui resistor yang bernilai 10k dan setelah itu nilai arus akan berkurang  dan di baca melalui voltmeter kedua menjadi 0,87 Volt yang mana dengan nilai arus tersebut sudah cukup untuk mengaktifkan kaki base transistor, lalu akan ada arus yang mengalir dari power supply menuju ke relay, menuju ke kaki kolektor lalu ke kaki emitor, dan akan berakhir di ground. Dengan adanya arus yang mengalir ke relay menyebabkan relay aktif dan switch akan berpindah dari kanan ke kiri yang mana arus akan mengalir ke baterai dan baterai mengalirkan arus untuk mengaktifkan komponen indikator yang telah dihambat oleh resistor 220 dan mengaktifkan komponen output rangkaian.

5. Download File


Rangkaian klik disini

Video Rangkaian klik disini

Datasheet Sensor Infrared  klik disini

Datasheet MQ-8 klik disini

Datasheet Relay klik disini

Datasheet Resistor klik disini

Datasheet Transitor NPN klik disini

Datasheet Motor DC klik disini

Datasheet Battery klik disini

 


Tidak ada komentar:

Posting Komentar

  BAHAN PRESENTASI MATA KULIAH ELEKTRONIKA 2021 OLEH : Nama : Zendri Ervan NIM : 2010953026 Dosen Pengampu : Dr. Darwison, MT Referensi : a....